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We briefly discuss the relevant equations for the motion of spinning particles in curved
spacetime. We describe the generalized Killing equations for spinning spaces and de-
rive the constants of motion. We apply the formalism to solve for the motion of a
pseudoclassical spinning particle in Schwarzschild—de Sitter spacetime.
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geodesics.

1. INTRODUCTION

The models of relativistic particles with spin have been proposed for a long
time. The pioneer work concerning the Lagrangian description of the relativistic
particle with spin was done by Frenkel in 1926 (Frenkel, 1926) and after that the
literature on it grew vast (Frydryszak, 1996).

The relativistic spin one half particle models involving anticommuting vec-
torial degrees of freedom are usually called the spinning particles.

The action of spin one half relativistic particle with spinning degrees of free-
dom characterized by Grassmann (odd) variables was first proposed by Berezin
and Marinov (1975, 1977) and soon after that was discussed and investigated by
many authors (Balachandrabal, 1977; Barduccet al,, 1976; Brinket al.,, 1976,

1977; Casalbuoni, 1976).

In spite of the fact that the anticommuting Grassmann variables do not admit
a direct classical interpretation, the Lagrangians for these models have a natural
interpretation in the context of the path-integral description of the quantum dynam-
ics. The pseudoclassical equations acquire physical meaning when averaged over
the inside of the functional integral (Barduetial., 1981b; Berezin and Marinov,
1975, 1977). In this semiclassical regime, neglecting higher order quantum corre-
lations, it should be admissible to replace appropriate combinations of Grassmann
spin—variables by real numbers. Using these ideas the motion of spinning par-
ticles in external fields have been investigated in Bardataeil. (1977, 1981a),
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Berezin and Marinov (1975, 1977), and van Holten (1991, 1992). On the other
hand, generalizations of Riemannian geometry based on anticommuting variables
have been proved to be of wide mathematical interest; for example, supersymmet-
ric point particle mechanics has found applications in the area of index theorem,
while the BRST methods are widely used in the study of topological invariants.
Therefore, the study of motion of spinning particles in curved spacetime is well
motivated.

Inthis paperwe presentan analysis of the motion of a pseudoclassical spinning
particle in curved spacetime. We investigate the generalized Killing equations
for the configuration space of spinning particlepifining spaceand describe
the constants of motion along with a new kind of supersymmetries generated
by the mysterious Killing—Yano-type square root of the Stackel-Killing tensor.
Spacetime supersymmetry has previously been applied to charged black holes
in the context ofN = 2 supergravity theory. The new kind of supersymmetries
addressed in this paper seems at first sight to be unrelated to that work. Actually,
the new fongenerig supersymmetry related to the motion of spinning particles
are applicable to all members of black hole spacetimes, while the Killing spinors
giving rise to symmetries of the solutions of supergravity field equations arise only
in the case of extreme solutions (or indeed naked singularities) whose mass and
charge in suitable units are equal.

We apply the formalism to solve for the motion of a pseudoclassical spinning
particle in a asymptotically de Sitter spacetime described by the Schwarzschild—
de Sitter metric. This spacetime is interesting in that it contains a cosmological
constant. Inrecentyears there has been arenewed interest in cosmological constant
as it is found to be present in the inflationary scenario of the early universe. In
this scenario the universe undergoes a stage where it is geometrically similar to
de Sitter spacetime (Guth, 1981). Among other things inflation has led to the cold
dark matter. According to cold dark matter theory, the bulk of the dark matter is in
the form of slowly moving particles (axions or neutralinos). If the cold dark matter
theory proves correct, it would shed light on the unification of forces (Turner,
1995, 1998). In view of these interests in the cosmological constant this work is
interesting.

The plan of this paper is as follows. In Subsection 2.1 we summarize the
relevant equations for the motion of spinning particles in curved spacetime and
briefly discuss their physical interpretation. In Subsection 2.2 we review Noether’s
theorem and the generalized Killing equations for spinning spaces. In Subsection
2.3 we describe the derivation of the constants of motion, which exist in any
theory, in terms of the solutions of the generalized Killing equations. In Subsection
2.4 we describe extra supersymmetries and their algebras for spinning spaces. In
Subsection 3.1 we apply the formalism for the motion of a spinning particle in the
Schwarzschild—de Sitter spacetime. We discuss specific solutions and derive an
exact equation for the precession of the perihelion of planar orbits in Subsection
3.2. In Subsection 3.3 we construct a new kind of supersymmetry generated by
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Killing—Yano tensors of second-rank in the Schwarzschild—de Sitter spacetime.
Finally, in Section 4 we present our remarks.

2. MOTIONS OF SPINNING PARTICLES IN CURVED SPACETIME
2.1. Spinning Space

A spinning space is an extension of an ordinary Riemannian manifold
parametrized by local coordinat¢s*}, to a graded manifold parametrized by
local coordiantegx”, ¥}, with the first set of variables being Grassmann-even
(commuting) and the second set Grassmann-odd (anticommuting) (Balachandran
et al, 1977; Barduccet al, 1976, 1977, 1981a,b; Berezin and Marinov, 1975,
1977; Brinket al,, 1976, 1977; Casalbuoni, 1976; Gibbatsal., 1993; Gitman,

1996; Guth, 1981; Rietdijk, 1992; Turner, 1995, 1998; van Holten, 1991, 1992,
1994, 1995). This extension generates a supersymmetry in spinning space, which
acts on the coordinates as

SXM = —ieyt, Syt = ext, (1)

where the dot denotes a derivative with respect to proper time and the infinitesimal
parametee of the transformation is Grassmann-odd. The equations for extremal

trajectories geodesiceof spinning space describe the pseudoclassical mechanics
of a Dirac fermion. To define the extremal trajectories we consider the supersym-
metric action

2 1 ey Dy
= [ ar (Go 005+ Sgn vt o). @
where the covariant derivative gf* is given by
D’W‘ T SAT M
= Iy, 3
DT I// + X )L\)w ( )

The variation of the action under arbitrary variatiofgA, §v*) is

D2 v i
8S= /dr{ —8xH <g,w + = 1/f1/f ReauvX )

DW d
‘HAl/f guv + d_ (SX pu - —SW‘ /ww )} (4)
wherep, is the canonical momentum:
., L
Pu = G X" — Elruklwkwk’ (5)
andR,,,, is the Riemann curvature tensor. Moreover,
AY* = Syt + X TL v (6)

is the covariantized variation af*.
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The trajectories, which make the action stationary under arbitrary variations
Sx* andsy* vanishing at the end points, are given by

D2x+ 1

= X+ TR = — i RO 7
D2 +15, > YY" R (7)
Dyt

=0. 8
Dy 8)

Clearly, when)* = 0, the solutions fox*(t) are ordinary geodesics in the bosonic
submanifold.

The anticommuting spin variables are related to the standard antisymmetric
spin tensor by

S = iy, ©

and correspondingly Eqgs. (7) and (8) describe the classical motion of a Dirac
particle. Equation (7) implies the existence of a spin-dependent gravitational force
(van Holten, 1991, 1992)
D2x* 1
=SSP R X, 10
D72 > R 0X (10)
which is similar to the electromagnetic Lorentz force

b = (%) Fo ", (11)

with spin replacing the scalar electric charge (Khriplovich, 1989; van Holten,
1991, 1992) (here for unit mass). Equation (8) asserts that the spin is covariantly
constant:

DS
Dy = 0. (12)

The interpretation 05" as spin tensor is corroborated by studying electro-
magnetic interactions of the particle (Barduetal., 1981a; Berezin and Marinov,
1975, 1977; Brinket al, 1977; van Holten, 1991, 1992). From such an analysis
it results that the spacelike compone8tsare proportional to the particle’s mag-
netic dipole moment, while the time-like compone®8 represent the electric
dipole moment. The requirement that for free Dirac particles like free electrons
and quarks the electric dipole moment vanishes in the rest frame can be written as
a covariant constraint (Rietdijk, 1992)

9, ()S"x* =0, (13)

which, in terms of the Grassmann coordinates, is equivalent to

O (X)X " = 0. (24)
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2.2. Symmetries and Generalized Killing Equations

We now look for specific variationsx* and Ay * of the form

o0
. 1.
Xt = RM(X, X, ¥) = RO (x, ¥) + > HXW s RETD (%, ),
n=1""

B = 84, ) = S 9) + ) s (), (15)
n=1""

which leave the action off-shell invariant modulo boundary terms. Ifthe Lagrangian
transforms into a total derivative

5 .
55:/ dri 8X"p, — '—awg,ww“ — T X, ¥) |, (16)
1 dT 2
it follows that
d7 D2x" , Dy
o (g;w + = Iﬁ U ReawX” >+|S“guv¥~ (17)

The right-hand side vanishes, if the equations of motion are satisfied, and itken
conserved. This is Noether’s theorem. Otherwise, expandipxg X, ) in terms
of the four-velocity,

T K W) = 30+ Y 0 Gy), (19)
n=1""

and comparing the left- and right-hand sides of Eq. (17) with the ansatz (15) for
Sx* andAvy#, one finds the following indentities:

IO ) =RO(x,¢), nx>1, (19)
SW) a‘J/(tl “Hn
iy (6 ¥) =T —=—=8 By (x,¥), n=0. (20)

These equations have to satisfy a generalization of the Killing equation of the form
(Gibbonset al,, 1993; Rietdijk, 1992; Rietdijk and van Holten, 1990)

(n) ( n) A (n+1)
Yas-simipens) T o Funea” ¥ = Ewkw Rerv(un2) Hur ) (21)

AV
where the parentheses denote symmetnzatlon with norm one over the indices
enclosed. WritingR® = R,, R = Ky, L&), = L1, etc., andd© = B, this
reduces for the Iowest components to
aB o, K I P10 K
B,M + WFW( 1// = Ew W RpUK/LR , (22)
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aR(H oK I o K

R(H?V) + awa FV)K w = Ewﬁw RPUK(M Kv) ' (23)
aK(MV oK i 0.1, K

K(MUJ)L) + 8—'¢'U F)L)K 1/f = Ew I//' Rpg,((“ ka) ’ etc (24)

These equations hold independently of the equations of motion.

In the scalar case, neglecting the Grassmann varigipléy all the gener-
alized Killing equations (21) are homogeneous and decoupled. The first equation
(n = 0) shows thatl® = B is a trivial constant, the next ona & 1) is the equa-
tion for the Killing vectorlegl) = R, andsoon. Ingeneral, for a givanneglecting
all spin variables, Eq. (21) defines a Killing tensor of valence

J((:Z“'Iln:ltmrl) (X) = 0’ (25)
and from Eq. (18)
J = JSI)MM”(X))'(M XM (26)

is a first integral of the geodesic equation (Dietz andliRger, 1981).

2.3. Generic Solutions for Spinning Space

In contrast to the scalar particle, the spinning particle admits several conserved
quantities of motion in a curved spacetime with megjc(x) (Rietdijk and van
Holten, 1990). Specifically, there are four independgmtericconstants of motion
that exist in any theory. These are as follows:

1. Similar to the bosonic casg, itself is a Killing tensor:

KMV = gﬂ‘“ (27)

with all other Killing vectors and tensors (bosonic as well as fermionic)
equal to zero. The corresponding constant of motion is the world-line
Hamiltonian,

1
H= ngn"n”’ (28)
where
1, = g,X" (29)

is the covariant momentum.
2. The Grassmann-odd Killing vectors

RE=yh, T)=i3) (30)
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provide another obvious solution. Here again all other Killing vectors and
tensors are taken to vanish. This solution gives the supercharge

Q=TI y" (31)

3. The spinning particle action has a second nonlinear supersymmetry gen-
erated by Killing vectors

—jld/2] ) )
Ru = g gy Gemaa ™ ¥,
i1(d-2)/2]
T = gy B Y (32)

Obviously, the Grassmann parities &, T,,) depend ord, the number
of spacetime dimensions. The corresponding constant of motion is the
dual supercharge

_jld/2]

Q" = gy B a1 g, (33)

4. Finally, there is a nontrivial Killing scalar
_jld/2]
i
F* = J(O) = —J— 8//-1 Mdl/fl 1. W‘Ld, (34)

which acts as the Hodge star duallty operatog@nin quantum mechanics
it becomes the/9*1 element of the Dirac algebra. Because of this reason
I, is referred to as the chiral charge.

The Poisson—-Dirac bracket for functions of the covariant phase-space vari-
ables &, I1, ¥) is defined by

G aF oF oG . oF oG
{(F,G}=D,F— — —D,G-Ryy—— +i(-17F —,
a1, 8Tl 311, 9T, YL Y,
(35)
where
oF , OF i -
D,F =0,F+ Ff‘”ma—nv -y g = Elﬂplﬁ Roouvs  (36)

andag is the Grassmann parity &f : ar = (0, 1) forF = (even, odd). Using this
bracket one finds that

Clearly, d = 2 is an exceptional cas€Q* is linear and acts as an ordinary
supersymmetry:
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It implies that in two dimensions the theory actually possessds an2 super-
symmetry. Fod # 2, the right-hand side of Eq. (38) vanishes.

2.4. Nongeneric Solutions for Spinning Space

The appearance of nongeneric supersymmetries for the spinning particle in
curved spacetime depends on the specific form of the mgyie). More explic-
itly, the existence of Killing—Yano tensors is both necessary and sufficient for the
appearance of a new supersymmetry for the spinning space (Gibbahsl993,;
van Holten, 1994, 1995).

We remind that a tensdf,, is called a Killing—Yano tensor of valence 2 (Dietz
and Ridinger, 1981; Yano, 1952) if and only if it is completely antisymmetric and
it satisfies the Penrose—Floyd equation (Floyd, 1973; Penrose, 1973)

D, fys. + Dy f = O, (39)

The Stackel—Killing tensoK ,,,, which is the solution of (24), has a certain square
root (Floyd, 1973; Penrose, 1973) such that

K, =121, (40)
Using the vielbein (tetrady; (x) the double vectorf 2 can be written as follows:
f2 = fue (41)
One now finds that the theory admits nongeneric supersymmetries of the type
SxH = —ief y? = —ieJWr, (42)
Such a transformation is generated by a phase-space furg@tion
Qr = IW, + 30, (43)

whereJO(x, ) andJM(x, ) are independent di.. When this ansatz is inserted
into the generalized Killing equations (21) with= 0, it follows that (Gibbons
et al, 1993)

IO = e XYY, (44)
where the tensor,p. is
Capbc = —2D[a be] = —2e“ae"be’\c D[ﬂ fU)\]. (45)

Here, the square brackets denote antisymmetrization with norm one over the in-
dices enclosed. Let there ¢ such symmetries specified By sets of tensors
(fi5, Giabc), 1 = 1,..., N. The corresponding generators will be

Q = fAT,y° + éqabc(x)wawbw. (46)



Spinning Particles in Curved Spacetime 2327

Obviously, for f#, = e*, andcane = 0, the supercharge (31) is precisely of this
form. It is therefore convenient to assign the index 0 : Q = Qo, €44 = fg,,
etc., when we refer to the quantities defining the standard supersymmetry.

The Poisson-Dirac bracket (35) gives the following algebra for the conserved
chargeQ;:

{Qi, Qj} =-2Zj, (47)
where
1 A
Zj = EK(J- IT,I1, + |iljll—lu +Gij, (48)
and
" v v
K" = 5 (fa fj* + fa f/9), (49)
1.
I = > YRR,
1o b s n v wo Louc 1o
ZEH// ) fibDija+ fijvfia‘l'éfi Cjabc‘l‘éfj Ciabc |, (50)
1 as b ,c,d
Gij = —ZW YUY Gijabed
1 a b ,c,d v 1 e
= _Zw vy R;wabfic fjd + ECiaijcde . (51)

The functionsz;; satisfy the generalized Killing equations. Hence their bracket
with the Hamiltonian vanishes and they are constants of motion:

dZi,-
—=0. 52
O (52)
Fori = j =0, (47) reduces to the usual supersymmetry algebra
{Q, Q}=-2iH. (53)

If i or j is not equal to zeroZ;; correspond to new bosonic symmetries, unless
K{" = 1aj)9"", with 1) a constant (may be zero). In that case the corresponding
Killing vector Ii’j‘ and scalaG;; disappear identically. Further, the supercharges for
Agjy # 0 close on the Hamiltonian. This shows the existence of a second supersym-
metry of the standard type. Thus the theory admitblaextended supersymmetry
with N > 2. On the contrary, if there exists a second independent Killing tensor
K#¥ not proportional t@*”, there exists a genuine new type of supersymmetry.
The quantityQ; is a superinvariant, that is,

{Qi,Q}=0 (54)
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for the bracket (35), if and only if
K = fra€?+ .2 =0. (55)

In this case, the full constant of motiay can be constructed directly by repeated
differentiation of f§* (Gibbonset al,, 1993).

As the Z;; are symmetric inif ) we can diagonalize them. This provides the
algebra

{Qi, Qj} = -2i5; Z;, (56)

with N + 1 conserved bosonic charggs If all Q; satisfy condition (55), the first
of these diagonal charges (with= 0) is the HamiltonianZy = H.

3. SPINNING PARTICLES IN SCHWARZSCHILD-DE SITTER
SPACETIME

3.1. Laws of Motion in Schwarzschild—de Sitter Spacetime

As an application of the generalized Killing equations of spinning space
we investigate the motion of a spinning particle in the Schwarzschild—de Sitter
spacetime described by the metric

2
ds? = —vdt® + dvr +r2(d6? + sir? 0dg?), (57)
where
[07 1 2
V() =1- =~ ZAr%, (58)

with « = 2M, M being the total mass of the gravitating body andhe cosmo-
logical parameter. This metric possesses four Killing vector fields of the form

D@ =R@"y,, a=0,...,3, (59)
where
ad . d 0
DO =_ D®=_sing— — cotd cosp—,
at 36 3

ad . a d
D® = cosp— — cotd sinp—, DO = _—. (60)
90 R10) R10)
These Killing vector fields describe the time-translation invariance and the spa-
tial rotation symmetry of the gravitating field. They generate the Lie algebra
o(1, 1) x sa(3):

[D® DO] = —¢2p© DO D@1 =0, @bc=1,23) (61)
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The first generalized Killing equation (22) shows that for each Killing vector
R® there is an associated Killing scaB. So, if we limit ourselves to variations
(15) that terminate after the terms linearxit, we get the constants of motion

J® = B® 4 mx*R®, (62)

which asserts that the contribution of spin is contained in the Killing sc&@l&ts
Without the Killing scalars the Killing vector itself does not give a conserved
quantity of motion.

Solving Eg. (22) for the Killing scalars of the Schwarzschild—de Sitter space-
time we obtain

BO — (2_ _ %Ar)S",

B = —r singS? — r sing cosd cospS ¥ + r?sirf 6 cospS’?,
B@ =r cospS? —r sind cost singS¢ + r?sirf 6 sinp S,
B® = r sif9S¥ +r?sind cost §¢, (63)

where the spin—tensor notation introduced in Eq. (9) has been used. From Eq. (62)
the four conserved quantitieé? are found as follows:

1 dt o 1
IO=g=m(1-2 - Zar2)" (2 _Zar)st,
m( r 3 ' dr 2 3 '

(1) - do 0 @ _ 2

JW = _rsing mrd—JrSr — cosp(cotd J®) —r28%%),
T

@ do 0 - @ _ 2

J@ =r cosp mrd—+Sr — sing(cotgJ® —r2g),
T

3(3):rsin29<mr3—(p+8’¢>+rzsin9003956“’), (64)
T

In addition to these conserved quantities, there are four generic constants of motion
as described in Subsection 2.3. We consider motion for which

m2
H=—-——. 65
5 (65)
This yields geodesic motion:
gudx‘dx’ = —dz?. (66)
The condition (13) gives the supersymmetric constraint

Q=0, (67)
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which enables one to solve fgrt in terms of the spatial components:

1_g_}Ar2 ﬂwt_ 1 ﬂwf
r 3 dr” ~ (1—a/r — Ar2/3)dr

+r2 d—9w9+sin29d—"’w ) (68)
dr dr
As a result, the dual superchar@® and the chiral charg€, vanish as well:

Q*=T,=0.
From (64) we can derive a useful identity

r2sindS* = JWsing cosp + J@ sing cosp + I cosy, (69)

which, in physical terms, simply states that there is no orbital angular momentum
in the radial direction.

Combining Egs. (64)—(67), one can obtain a complete set of first integrals of
motion as follows:

dt 1 E 1o Ay
ar - A—ayr—arz3)|m Tm\z2z 3)° |

dr a 1 2/dt\? a 1
bl 1-2 A2} (=) —14+ 24 Zar?
dr {( r 3r><dr) +r+3r

5 o 1 , doy? de\ 21 "?
—r (1—F—§AI’ >|:<d_l') +S|r\29<a> :|} )

=]

de 1
o~ mel T IWsing + 3@ cosp —rS'),
d 1 5 1, 1
= [ — — —cot 4 70
dr erSin219‘J mrg mcoOS", (70)
where
mr? /dé P 17
St=—(--9° mo——-5¢). 71
E (dt +s dr (1)

Finally Eq. (8) with Eq. (9) gives equations for the spin. The equations that are left
for solution are

0 1
ds =_—d—S’9+smecos(9 (pS’“’—rsmze 1—— d(ps("”
dr r dr 2r
dsv  dp., (1ldr o o, ,
= _coteasr _(_E_'_ tea)s' +r<1—2—> s¢, (72)

whereS’ is given by (69).
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For A = 0 the above equations reduce to the Schwarzschild results (Rietdijk
and van Holten, 1993). One has to solve Egs. (70)—(72) to obtain the full solution
of the equations of motion for all coordinates and spins.

3.2. Special Solutions

We apply the results obtained in Subsection 3.1 to study the special case of
motion in a plane, for which we choose= /2. In contrast to scalar particles,
this is not the generic case, because in general orbital angular momentum is not
conserved separately.

Planar motion for spinning particles is strictly possible only in special cases, in
which orbital and spin angular momentum are separately conserved. This happens
only in two kinds of situations: the orbital angular momentum vanishes, or spin
and orbital angular momentum are parallel.

With 6 = /2 andd = 0, Egs. (70)—(72) become

dt 1 E 1/a A 3\dp v
d__(l—a/r—ArZ/S)[m+E(2 Sr)drsr}’

ﬂ 1_g_£r22
dz r 3

dp 1 4 _1

Q

- _ _~ gy
dr erJ mrSr ’
d 3o de
il Sr9 — 2 1— = SG(p_,
dr(r ) ' < 2r> dr
d
E(rs“”) =0. (73)

The third and the last equations of (73) express the fact that the orbital angular
momentum and the component of the spin perpendicular to the plane in which the
particle moves are separately conserved:

rS*=x, mr?p=J30_x=1, (74)

whereX andL are two constants. From the first of Eq. (73) we find a formula for
the gravitational redshift in the form

_ dr E 1 (o A,
dt= Q-a/r — Ar2/3)|:ﬁ + mEr (E - Er )L2i|' (75)

For nonzero orbital angular momenturn, the time-dilation receives a
contribution from spin—orbit coupling. Thus we see that time-dilation is not a
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purely geometric effect, but also has a dynamical component (van Holten, 1991,
1992).

From Egs. (69), third of (70), and fourth of (73) with= /2, we find that
there are indeed only two possibilities:

()p=0, (i)S”=0o. (76)

Case(i). ¢ = 0impliesthatl. = 0. The particle moves along a fixed radius.
The equation of motion of the particle for a distant observer is described by

dr o 1 m? a 1

i _Z_ _ (12 _ ZAr2

it <1 ; 3 )\/1 2 (1 ; 3Ar ) 77)
as in the case of a spinless patrticle. If we chapse 0 for the path of the particle,

then the spin tensor components are all conserved:

r2ge =30,y =3@ g =30, (78)

Case(ii). ¢ # 0implies that
§¢=0, S’=0 JV=3@=0. (79)

This states that the spin is parallel to the orbital angular momentum. From Eqg. (73)
for r andy we obtain following equation for the orbit of the particle:

1/dr\*> E?-m?, m 2 5

ﬁ(@) = L2 r —1+t<a_§Ar>
mr J® m?r 2
<T+—>+AI’< [z > (80)

In terms of dimensionless variables

E L b))
e=—, x=1, t=—, A=2 r=aJAl (81)
m o [100% L
Eq. (80) takes the form
2 (dx\? 2.2 2 2 42
F(@) = o = €2 — UR(x, 2, 32), (82)

where
2 42 2 2 3,2, 2 > 1
Ur(X, €5, 1) =1+ é(l'f‘A)@ —X +§X — X | A —;

e, 1
+o5 — P+ ) (83)

defines an effective potential.
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All calculations presented here are rather formalAds not a pure number.
For realistic physics situations, we have to replada certain limiting cases by a
real number. As mentioned in Introduction section this may be done by averaging
over some suitable density, as in the path-integral. In the following we assume that
such an averaging procedure has been performed, anditasat classical variable.
To avoid any inconsistency that may result from this semiclassical approximation,
we presuppose the numerical valuefofo be small:A « 1.

For bound state orbits it is necessary that 1. The functionJg(x, £2, A?)
has a point of inflection that corresponds to a circular orbit with minimum radius
given by

1
AZ2(3x — 1)x + £2]x3 + 3031 + A); —¢?=0, (84)
where
1 4
= Z|x—32%1- — )x°]|,
P 9x
1 2,3
P=2—3(1+A);+Ax, (85)

with P > 0. For this critical orbit, the energy is given by
1 2x? 1
€2 =1- - (x3 - ?),\2 +£2Rﬁ, (86)
with
1 2 2 3 2
R:l—(l—i—A);—i- §(l+A)X — X7 )15,

and the time-dilation factor is expressed by

dt 1 02N
- = —|egit— =——=(1—2(1— N)X) |, 87
<df)crit N |:Ecm 2€critX3( ( ) ):| (87)
with
1 1
N=1-2>+ %2
x 3
Equation (84) withh. = 0 gives the radius of the minimal circular orbit as

X =£2=3(1+ A). (88)

The energy and the time-dilation for this orbit are respectively given by

w263 () A) e
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to first order inA. This is the Schwarzschild result as obtained in Rietdijk and van
Holten (1993).

The orbits of the particle that approach precessing ellipses (because of rela-
tivistic effects) are described by

K
1+ ecoskp —w(p)]’
wherex = «/a, « being the semilatus rectum ands the eccentricity with &
¢ < 1. The perihelion and aphelion are given by

oon —Wlgp) = 2w, o) —w(eg) = @ + D (91)

(90)

The angle(p(t) is thetth perihelion of the particle, Whl|w(g0(t)) is the amount
of precession of the perihelion afterevolutions. Hence the precesssion of the
perihelion after one revolution is

Aw = W((pé}])) (90[(3?1)) = (pé}]) (0) — 271 = Ap — 21. (92)

The energy at the perihelion/aphelion is given by

o () () (127
HZ[%,@(H A - (1ig>3+ %(15:8)2 _E2<1ie>]‘ (®3)

Since the energy is a constant of motion, it follows from comparison of both
expressions foe? that

2 k% Bi(1—e?)® 4+ A% 41 — £2) — 3(3+ £2)«]
C3(1—62)2 (1—e2)k[2c — (L4 A)B+ )] + 2%
Using the above results and introducing
y=9—W(p) (95)

the equation of motion (82) can be put in the form

(94)

dp & siny(1 + ¢ cosy)¥? dy, (96)

€ (7o Ar(e cosyy)”?

where

Ay = 262[3,2(6 — 1)+ 3(k — £€2) + 2%c?(Bx? — 2« + 3¢?)]

+—(1 + A)(B— 2322,
3?2
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A = ZZZ ——[3k(Bk(€? — 1)+ 4) — 15¢% — 2 3(k — 3¢?)22]

+ —3(1 + A)(9 — «32?),

2€2[3K(K(e — 1)+ 2) — 1062 + «2¢%)?] +- (1 + A)(15— 2¢3)?),

Ag = me(e —1)+4)— 1062]+@(1+A)(30—K3A2),

A4= ZZZ(K_5€2)+_(1+A)
Ao = — 5k — 6(1+ A
As=S(1+ ),

K
Ar= S[1—2(1+ A)],

K

€? and¢? are given by (93) and (94). They as defined in (92) is obtained by
integrating (96) from one perihelion to the next one witk ¢ < 27. The result
gives

21 2
Ap = a [1 + 5—128 (15b + 70c) + - ] (97)

wherea = / Aok /e, b = A1/ Ao, C = Ay/Ap. In evaluating this expression we
should disregard terms of ordar. With » = 0, Eq. (97) reduces to

Ag =27 [1 + %(1+ A)+ —— (% + 18)(1+ A + } (98)

16/(2

which is exactly the result as derived in Rietdijk and van Holten (1993) for the
Schwarzschild spacetime.

3.3. Nongeneric Supersymmetry

In this subsection, we apply the results of Subsection 2.4 to investigate a new
type of supersymmetry in the Schwarzschild—de Sitter spacetime described by the
metric (57). The Killing—Yano tensof,, (x) for this spacetime is defined by

1
> fLdx* Adx’ =rsingdd Ar2dg, (99)
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while the vierbeire’ (x) is given by the following expressions:

edx = —Udt, eldx*=U""dr, €dx*=rds, edx*=rsinody,
(100)
whereU = +/V. The components of 2(x) can be written as follows:

flfdx* =0= fldx*, fZdx*=—r?singdy, f2dx*=r?ds.  (101)
From Eq. (45) we obtain the componentxgf(x) as follows:
Co12=0, Co13=0, Co23=0, Cro3=—2U. (102)

Inserting the quantities derived in Egs. (101) and (102) into Eq. (46) we obtain the
new supersymmetry genera@y for the Schwarzschild—de Sitter spacetime. From
Egs. (49)—(51) the Killing tensor, vector, and scalar are constructed as follows:

K (X)dxtdx” = ri(sir? 0dg? + d6?), (103)
L, (X)dx* = r?[U(sindS? + U coss §¢)

—Vcos#S¥]dg +r2US?de, (104)

G=0. (105)

From the Poisson—Dirac bracket (35) it can be verified straightforwardly that these
equations satisfy theq(3,1) algebra.
The expression foQ; and Eqgs. (103)—(105) then define the conserved charge

Z= 'E{Qf, Q). (106)

4. REMARKS

The spinning particle model is a world line supersymmetric extension of the
ordinary relativistic point particle. It is a theory that describes in a pseudoclassical
way a Dirac fermion moving in an arbitrary spacetime. Together with the usual
spacetime coordinates, the model involves anticommuting vectorial coordinates
that take into account the spin degrees of freedom. Along the world line of the
particle there is a supersymmetry between the fermionic spin variables and the
bosonic position coordinates. The model gives a one-dimensional supersymmetric
field theory on the world line.

There is no classical interpretation for the anticommuting spin variables. One
has to average over the spin variables to get the “observable” trajectories. Indeed, it
is possible to quantize the model giving rise to supersymmetric quantum mechanics
and then the conservation law for the supercharges becomes the Dirac equation.

Carter and McLenaghan (1979) showed that the Killing—Yano tensors play a
key role in the Dirac theory on a curved spacetime. The study of the generalized
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Killing equations strengthens the connection of the Killing—Yano tensors with the
supersymmetric classical and quantum mechanics on a curved manifold.

The Stackel—Killing tensor determines a constant of motion (directly) for a
scalar particle in a curved spacetime, whereas for a spinning particle it requires
nontrivial contributions from spin. These spin-dependent portions are described by
the Killing—Yano-type square root of the Stackel—Killing tensor. We have presented
a detailed discussion on how to construct conserved quantities using Killing—Yano
tensors for the Schwarzschild—de Sitter spacetime. This spacetime has an interest-
ing property that it is asymptotically de Sitter instead of being asymptotically flat.
We have solved the equations of motion for the case wtisteld fixed. Because
of the presence of cosmological parameter the result of our study is interesting
from the point of view of the inflationary scenario of the early universe. From
our result one can get the result for the Schwarzschild spacetime as obtained in
Rietdijk and van Holten (1993) by simply choosing the cosmological parameter
A = 0. Besides, by neglecting the mass parameter one can specialized our result
for the interesting de Sitter spacetime (de Sitter, 1917).

Even if an a priori numerical value for the rativ (Eq. (81)) cannot be
assigned, its appearance in various places like in Egs. (86), (87), (89), (97), and
(98) still allows the pseudoclassical theory to make quantitative predictions by
comparing different physical processes in the regime where the semiclassical limit
applies.

Supersymmetry and its local version—supergravity—are relevant in the fun-
damental theory of particle interactions. In modern particle theory, supersymmetry
is the most general symmetry of tBematrix consistent with relativistic quantum
field theory (Haaget al, 1975). So it is not inconceivable that nature might make
some use of it. Indeed, superstrings (Gret¢ml, 1987; Schellekens, 1989) are
the present best candidates for a consistent quantum theory unifying gravity with
all other fundamental interactions, and supersymmetry appears to play a very im-
portant role for the quantum stability of superstring solutions in four-dimensional
spacetime. In view of these reasons, the study of the geometry of the graded pseu-
domanifolds with both real number and anticommuting variables is well motivated.
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