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We briefly discuss the relevant equations for the motion of spinning particles in curved
spacetime. We describe the generalized Killing equations for spinning spaces and de-
rive the constants of motion. We apply the formalism to solve for the motion of a
pseudoclassical spinning particle in Schwarzschild–de Sitter spacetime.
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1. INTRODUCTION

The models of relativistic particles with spin have been proposed for a long
time. The pioneer work concerning the Lagrangian description of the relativistic
particle with spin was done by Frenkel in 1926 (Frenkel, 1926) and after that the
literature on it grew vast (Frydryszak, 1996).

The relativistic spin one half particle models involving anticommuting vec-
torial degrees of freedom are usually called the spinning particles.

The action of spin one half relativistic particle with spinning degrees of free-
dom characterized by Grassmann (odd) variables was first proposed by Berezin
and Marinov (1975, 1977) and soon after that was discussed and investigated by
many authors (Balachandranet al., 1977; Barducciet al., 1976; Brinket al., 1976,
1977; Casalbuoni, 1976).

In spite of the fact that the anticommuting Grassmann variables do not admit
a direct classical interpretation, the Lagrangians for these models have a natural
interpretation in the context of the path-integral description of the quantum dynam-
ics. The pseudoclassical equations acquire physical meaning when averaged over
the inside of the functional integral (Barducciet al., 1981b; Berezin and Marinov,
1975, 1977). In this semiclassical regime, neglecting higher order quantum corre-
lations, it should be admissible to replace appropriate combinations of Grassmann
spin–variables by real numbers. Using these ideas the motion of spinning par-
ticles in external fields have been investigated in Barducciet al. (1977, 1981a),
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Berezin and Marinov (1975, 1977), and van Holten (1991, 1992). On the other
hand, generalizations of Riemannian geometry based on anticommuting variables
have been proved to be of wide mathematical interest; for example, supersymmet-
ric point particle mechanics has found applications in the area of index theorem,
while the BRST methods are widely used in the study of topological invariants.
Therefore, the study of motion of spinning particles in curved spacetime is well
motivated.

In this paper we present an analysis of the motion of a pseudoclassical spinning
particle in curved spacetime. We investigate the generalized Killing equations
for the configuration space of spinning particles (spinning space) and describe
the constants of motion along with a new kind of supersymmetries generated
by the mysterious Killing–Yano-type square root of the Stackel–Killing tensor.
Spacetime supersymmetry has previously been applied to charged black holes
in the context ofN = 2 supergravity theory. The new kind of supersymmetries
addressed in this paper seems at first sight to be unrelated to that work. Actually,
the new (nongeneric) supersymmetry related to the motion of spinning particles
are applicable to all members of black hole spacetimes, while the Killing spinors
giving rise to symmetries of the solutions of supergravity field equations arise only
in the case of extreme solutions (or indeed naked singularities) whose mass and
charge in suitable units are equal.

We apply the formalism to solve for the motion of a pseudoclassical spinning
particle in a asymptotically de Sitter spacetime described by the Schwarzschild–
de Sitter metric. This spacetime is interesting in that it contains a cosmological
constant. In recent years there has been a renewed interest in cosmological constant
as it is found to be present in the inflationary scenario of the early universe. In
this scenario the universe undergoes a stage where it is geometrically similar to
de Sitter spacetime (Guth, 1981). Among other things inflation has led to the cold
dark matter. According to cold dark matter theory, the bulk of the dark matter is in
the form of slowly moving particles (axions or neutralinos). If the cold dark matter
theory proves correct, it would shed light on the unification of forces (Turner,
1995, 1998). In view of these interests in the cosmological constant this work is
interesting.

The plan of this paper is as follows. In Subsection 2.1 we summarize the
relevant equations for the motion of spinning particles in curved spacetime and
briefly discuss their physical interpretation. In Subsection 2.2 we review Noether’s
theorem and the generalized Killing equations for spinning spaces. In Subsection
2.3 we describe the derivation of the constants of motion, which exist in any
theory, in terms of the solutions of the generalized Killing equations. In Subsection
2.4 we describe extra supersymmetries and their algebras for spinning spaces. In
Subsection 3.1 we apply the formalism for the motion of a spinning particle in the
Schwarzschild–de Sitter spacetime. We discuss specific solutions and derive an
exact equation for the precession of the perihelion of planar orbits in Subsection
3.2. In Subsection 3.3 we construct a new kind of supersymmetry generated by
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Killing–Yano tensors of second-rank in the Schwarzschild–de Sitter spacetime.
Finally, in Section 4 we present our remarks.

2. MOTIONS OF SPINNING PARTICLES IN CURVED SPACETIME

2.1. Spinning Space

A spinning space is an extension of an ordinary Riemannian manifold
parametrized by local coordinates{xµ}, to a graded manifold parametrized by
local coordiantes{xµ, ψµ}, with the first set of variables being Grassmann-even
(commuting) and the second set Grassmann-odd (anticommuting) (Balachandran
et al., 1977; Barducciet al., 1976, 1977, 1981a,b; Berezin and Marinov, 1975,
1977; Brinket al., 1976, 1977; Casalbuoni, 1976; Gibbonset al., 1993; Gitman,
1996; Guth, 1981; Rietdijk, 1992; Turner, 1995, 1998; van Holten, 1991, 1992,
1994, 1995). This extension generates a supersymmetry in spinning space, which
acts on the coordinates as

δxµ = −i εψµ, δψµ = ε ẋµ, (1)

where the dot denotes a derivative with respect to proper time and the infinitesimal
parameterε of the transformation is Grassmann-odd. The equations for extremal
trajectories (geodesics) of spinning space describe the pseudoclassical mechanics
of a Dirac fermion. To define the extremal trajectories we consider the supersym-
metric action

S=
∫ 2

1
dτ

(
1

2
gµν(x)ẋµ ẋν + i

2
gµν(x)ψµ Dψν

Dτ

)
, (2)

where the covariant derivative ofψµ is given by

Dψµ

Dτ
= ψ̇µ + ẋλ0µλνψ

ν. (3)

The variation of the action under arbitrary variations (δxµ, δψµ) is

δS=
∫ 2

1
dτ

{
−δxµ

(
gµν

D2xν

Dτ 2
+ i

2
ψκψλRκλµν ẋ

ν

)
+i1ψµgµν

Dψν

Dτ
+ d

dτ

(
δxµpµ − i

2
δψµgµνψ

ν

)}
, (4)

wherepµ is the canonical momentum:

pµ = gµν ẋ
ν − 1

2
i0µκλψ

κψλ, (5)

andRκλµν is the Riemann curvature tensor. Moreover,

1ψµ = δψµ + δxλ0µλνψν (6)

is the covariantized variation ofψµ.
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The trajectories, which make the action stationary under arbitrary variations
δxµ andδψµ vanishing at the end points, are given by

D2xµ

Dτ 2
= ẍµ + 0µλν ẋλ ẋν = −

1

2
iψκψλRκλ

µ
ν ẋ
ν , (7)

Dψµ

Dτ
= 0. (8)

Clearly, whenψµ = 0, the solutions forxµ(τ ) are ordinary geodesics in the bosonic
submanifold.

The anticommuting spin variables are related to the standard antisymmetric
spin tensor by

Sµν = −iψµψν , (9)

and correspondingly Eqs. (7) and (8) describe the classical motion of a Dirac
particle. Equation (7) implies the existence of a spin-dependent gravitational force
(van Holten, 1991, 1992)

D2xµ

Dτ 2
= 1

2
SκλRκλ

µ
ν ẋ
ν , (10)

which is similar to the electromagnetic Lorentz force

ẍµ =
(

q

m

)
Fµ

ν ẋ
ν , (11)

with spin replacing the scalar electric charge (Khriplovich, 1989; van Holten,
1991, 1992) (here for unit mass). Equation (8) asserts that the spin is covariantly
constant:

DSµν

Dτ
= 0. (12)

The interpretation ofSµν as spin tensor is corroborated by studying electro-
magnetic interactions of the particle (Barducciet al., 1981a; Berezin and Marinov,
1975, 1977; Brinket al., 1977; van Holten, 1991, 1992). From such an analysis
it results that the spacelike componentsSi j are proportional to the particle’s mag-
netic dipole moment, while the time-like componentsSio represent the electric
dipole moment. The requirement that for free Dirac particles like free electrons
and quarks the electric dipole moment vanishes in the rest frame can be written as
a covariant constraint (Rietdijk, 1992)

gνλ(x)Sµν ẋλ = 0, (13)

which, in terms of the Grassmann coordinates, is equivalent to

gµν(x)ẋµψν = 0. (14)
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2.2. Symmetries and Generalized Killing Equations

We now look for specific variationsδxµ and1ψµ of the form

δxµ = Rµ(x, ẋ, ψ) = R(1)µ(x, ψ)+
∞∑

n=1

1

n!
ẋν1 · · · ẋνn R

(n+1)µ
ν1···νn (x, ψ),

δψµ = Sµ(x, ẋ, ψ) = S(0)µ(x, ψ)+
∞∑

n=1

1

n!
ẋν1 · · · ẋνn S

(n)µ
ν1···νn(x, ψ), (15)

which leave the action off-shell invariant modulo boundary terms. If the Lagrangian
transforms into a total derivative

δS=
∫ 2

1
dτ

d

dτ

(
δxµpµ − i

2
δψµgµνψ

ν − J (x, ẋ, ψ)

)
, (16)

it follows that

dJ
dτ
= Rµ

(
gµν

D2xν

Dτ 2
+ i

2
ψκψλRκλµν ẋ

ν

)
+ iSµgµν

Dψν

Dτ
. (17)

The right-hand side vanishes, if the equations of motion are satisfied, and thenJ is
conserved. This is Noether’s theorem. Otherwise, expandingJ (x, ẋ, ψ) in terms
of the four-velocity,

J (x, ẋ, ψ) = J(0)(x, ψ)+
∞∑

n=1

1

n!
ẋµ1 · · · ẋµn J(n)

µ1···µn
(x, ψ), (18)

and comparing the left- and right-hand sides of Eq. (17) with the ansatz (15) for
δxµ and1ψµ, one finds the following indentities:

J(n)
µ1···µn

(x, ψ) = R(n)
µ1···µn

(x, ψ), n ≥ 1, (19)

S(n)
µ1···µnν

(x, ψ) = i
∂ J(n)

µ1···µn

∂ψν
(x, ψ), n ≥ 0. (20)

These equations have to satisfy a generalization of the Killing equation of the form
(Gibbonset al., 1993; Rietdijk, 1992; Rietdijk and van Holten, 1990)

J(n)
(µ1···µn;µn+1) +

∂ J(n)
(µ1···µn)

∂ψσ
0(µn+1)κ

σψκ = i

2
ψκψλRκλν(µn+1) J

(n+1)ν
(µ1···µn), (21)

where the parentheses denote symmetrization with norm one over the indices
enclosed. WritingR(1)

µ = Rµ, R(2)
µν = Kµν , L (3)

µνλ = Lµνλ, etc., andJ(0) = B, this
reduces for the lowest components to

B,µ + ∂B

∂ψσ
0 σ
µκ ψ

κ = i

2
ψρψσ RρσκµRκ , (22)
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R(µ;ν) + ∂R(µ

∂ψσ
0 σ
ν)κ ψ

κ = i

2
ψρψσ Rρσκ(µK κ

ν) , (23)

K(µν;λ) + ∂K(µν

∂ψσ
0 σ
λ)κ ψ

κ = i

2
ψρψσ Rρσκ(µL κ

νλ) , etc. (24)

These equations hold independently of the equations of motion.
In the scalar case, neglecting the Grassmann variables{ψµ}, all the gener-

alized Killing equations (21) are homogeneous and decoupled. The first equation
(n = 0) shows thatJ(0) = B is a trivial constant, the next one (n = 1) is the equa-
tion for the Killing vectorsJ(1)

µ = Rµ and so on. In general, for a givenn, neglecting
all spin variables, Eq. (21) defines a Killing tensor of valencen:

J(n)
(µ1···µn;µn+1)(x) = 0, (25)

and from Eq. (18)

J = J(n)
µ1···µn

(x)ẋµ1 · · · ẋµn (26)

is a first integral of the geodesic equation (Dietz and R¨udinger, 1981).

2.3. Generic Solutions for Spinning Space

In contrast to the scalar particle, the spinning particle admits several conserved
quantities of motion in a curved spacetime with metricgµν(x) (Rietdijk and van
Holten, 1990). Specifically, there are four independentgenericconstants of motion
that exist in any theory. These are as follows:

1. Similar to the bosonic casegµν itself is a Killing tensor:

Kµν = gµν , (27)

with all other Killing vectors and tensors (bosonic as well as fermionic)
equal to zero. The corresponding constant of motion is the world-line
Hamiltonian,

H = 1

2
gµν5µ5ν , (28)

where

5µ = gµν ẋ
ν (29)

is the covariant momentum.
2. The Grassmann-odd Killing vectors

Rµ = ψµ, Tν
µ = i δνµ (30)
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provide another obvious solution. Here again all other Killing vectors and
tensors are taken to vanish. This solution gives the supercharge

Q = 5µψ
µ. (31)

3. The spinning particle action has a second nonlinear supersymmetry gen-
erated by Killing vectors

Rµ = −i [d/2]

(d − 1)!

√−gεµν1···νd−1ψ
ν1 · · ·ψνd−1,

Tµν = i [(d−2)/2]

(d − 2)!

√−gεµνν1···νd−2ψ
ν1 · · ·ψνd−2. (32)

Obviously, the Grassmann parities of (Rµ, Tµν) depend ond, the number
of spacetime dimensions. The corresponding constant of motion is the
dual supercharge

Q∗ = −i [d/2]

(d − 1)!

√−gεµ1···µd5
µ1ψµ2 · · ·ψµd . (33)

4. Finally, there is a nontrivial Killing scalar

0∗ = J(0) = −i [d/2]

d!

√−gεµ1···µdψ
µ1 · · ·ψµd , (34)

which acts as the Hodge star duality operator onψµ. In quantum mechanics
it becomes theγ d+1 element of the Dirac algebra. Because of this reason
0∗ is referred to as the chiral charge.

The Poisson–Dirac bracket for functions of the covariant phase-space vari-
ables (x,5, ψ) is defined by

{F, G} = DµF
∂G

∂5µ

− ∂F

∂5µ

DµG−Rµν ∂F

∂5µ

∂G

∂5ν

+ i (−1)aF ∂F

∂ψµ

∂G

∂ψµ
,

(35)

where

DµF = ∂µF + 0λµν5λ

∂F

∂5ν

− 0λµνψν ∂F

∂ψλ
, Rµν = i

2
ψρψσ Rρσµν , (36)

andaF is the Grassmann parity ofF : aF = (0, 1) forF = (even, odd). Using this
bracket one finds that

{Q, Q} = −2i H , {Q, 0∗} = −i Q∗. (37)

Clearly, d = 2 is an exceptional case:Q∗ is linear and acts as an ordinary
supersymmetry:

{Q∗, Q∗} = −2i H , {Q∗, 0∗} = −i Q. (38)
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It implies that in two dimensions the theory actually possesses anN = 2 super-
symmetry. Ford 6= 2, the right-hand side of Eq. (38) vanishes.

2.4. Nongeneric Solutions for Spinning Space

The appearance of nongeneric supersymmetries for the spinning particle in
curved spacetime depends on the specific form of the metricgµν(x). More explic-
itly, the existence of Killing–Yano tensors is both necessary and sufficient for the
appearance of a new supersymmetry for the spinning space (Gibbonset al., 1993;
van Holten, 1994, 1995).

We remind that a tensorfµν is called a Killing–Yano tensor of valence 2 (Dietz
and Rüdinger, 1981; Yano, 1952) if and only if it is completely antisymmetric and
it satisfies the Penrose–Floyd equation (Floyd, 1973; Penrose, 1973)

Dµ fνλ + Dν fµλ = 0. (39)

The Stackel–Killing tensorKµν , which is the solution of (24), has a certain square
root (Floyd, 1973; Penrose, 1973) such that

K ν
µ = f a

µ f νa . (40)

Using the vielbein (tetrad)ea
µ(x) the double vectorf a

µ can be written as follows:

f a
µ = fµνe

νa. (41)

One now finds that the theory admits nongeneric supersymmetries of the type

δxµ = −i ε f µaψ
a ≡ −i εJ(1)µ . (42)

Such a transformation is generated by a phase-space functionQf :

Qf = J(1)µ5µ + J(0), (43)

whereJ(0)(x, ψ) andJ(1)(x, ψ) are independent of5. When this ansatz is inserted
into the generalized Killing equations (21) withn = 0, it follows that (Gibbons
et al., 1993)

J(0) = i

3!
cabc(x)ψaψbψc, (44)

where the tensorcabc is

cabc= −2D[a fbc] ≡ −2eµaeνbeλcD[µ fνλ] . (45)

Here, the square brackets denote antisymmetrization with norm one over the in-
dices enclosed. Let there beN such symmetries specified byN sets of tensors
( f µia , ciabc), i = 1, . . . , N. The corresponding generators will be

Qi = f µia5µψ
a + i

3!
ciabc(x)ψaψbψc. (46)
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Obviously, for f µa = eµa andcabc= 0, the supercharge (31) is precisely of this
form. It is therefore convenient to assign the indexi = 0 : Q = Q0, eµa = f µ0a,
etc., when we refer to the quantities defining the standard supersymmetry.

The Poisson–Dirac bracket (35) gives the following algebra for the conserved
chargesQi :

{Qi , Qj } = −2i Zi j , (47)

where

Zi j = 1

2
Kµν

i j 5µ5ν + I µi j 5µ + Gi j , (48)

and

Kµν

i j =
1

2

(
f µia f νa

j + f νia f µa
j

)
, (49)

I µi j =
1

2
iψaψbI µi jab

= 1

2
iψaψb

(
f νib Dν f µja + f νjb Dν f µia +

1

2
f µc
i cjabc+ 1

2
f µc

j ciabc

)
, (50)

Gi j = −1

4
ψaψbψcψdGi jabcd

= −1

4
ψaψbψcψd

(
Rµνab f µic f νjd +

1

2
c e

iabcjcde

)
. (51)

The functionsZi j satisfy the generalized Killing equations. Hence their bracket
with the Hamiltonian vanishes and they are constants of motion:

d Zi j

dτ
= 0. (52)

For i = j = 0, (47) reduces to the usual supersymmetry algebra

{Q, Q} = −2i H . (53)

If i or j is not equal to zero,Zi j correspond to new bosonic symmetries, unless
Kµν

i j = λ(i j )gµν , with λ(i j ) a constant (may be zero). In that case the corresponding
Killing vector I µi j and scalarGi j disappear identically. Further, the supercharges for
λ(i j ) 6= 0 close on the Hamiltonian. This shows the existence of a second supersym-
metry of the standard type. Thus the theory admits anN-extended supersymmetry
with N ≥ 2. On the contrary, if there exists a second independent Killing tensor
Kµν not proportional togµν , there exists a genuine new type of supersymmetry.

The quantityQi is a superinvariant, that is,

{Qi , Q} = 0 (54)
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for the bracket (35), if and only if

Kµν

0i = f µaeνa + f νaeµa = 0. (55)

In this case, the full constant of motionZij can be constructed directly by repeated
differentiation of f µa (Gibbonset al., 1993).

As theZi j are symmetric in (i j ) we can diagonalize them. This provides the
algebra

{Qi , Qj } = −2i δi j Zi , (56)

with N + 1 conserved bosonic chargesZi . If all Qi satisfy condition (55), the first
of these diagonal charges (withi = 0) is the Hamiltonian:Z0 = H .

3. SPINNING PARTICLES IN SCHWARZSCHILD–DE SITTER
SPACETIME

3.1. Laws of Motion in Schwarzschild–de Sitter Spacetime

As an application of the generalized Killing equations of spinning space
we investigate the motion of a spinning particle in the Schwarzschild–de Sitter
spacetime described by the metric

ds2 = −V dt2+ dr2

V
+ r 2(dθ2+ sin2 θdϕ2), (57)

where

V(r ) = 1− α
r
− 1

3
3r 2, (58)

with α = 2M , M being the total mass of the gravitating body and3 the cosmo-
logical parameter. This metric possesses four Killing vector fields of the form

D(a) ≡ R(a)µ∂µ, a = 0, . . . , 3, (59)

where

D(0) = ∂

∂t
, D(1) = − sinϕ

∂

∂θ
− cotθ cosϕ

∂

∂ϕ
,

D(2) = cosϕ
∂

∂θ
− cotθ sinϕ

∂

∂ϕ
, D(3) = ∂

∂ϕ
. (60)

These Killing vector fields describe the time-translation invariance and the spa-
tial rotation symmetry of the gravitating field. They generate the Lie algebra
o(1, 1)× so(3):

[D(a), D(b)] = −εabcD(c), [D(0), D(a)] = 0, (a, b, c = 1, 2, 3). (61)
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The first generalized Killing equation (22) shows that for each Killing vector
R(a)
µ there is an associated Killing scalarB(a). So, if we limit ourselves to variations

(15) that terminate after the terms linear inẋµ, we get the constants of motion

J(a) = B(a) +mẋµR(a)
µ , (62)

which asserts that the contribution of spin is contained in the Killing scalarsB(a).
Without the Killing scalars the Killing vector itself does not give a conserved
quantity of motion.

Solving Eq. (22) for the Killing scalars of the Schwarzschild–de Sitter space-
time we obtain

B(0) =
(
α

2r 2
− 1

3
3r

)
Str ,

B(1) = −r sinϕSr θ − r sinθ cosθ cosϕSrϕ + r 2 sin2 θ cosϕSθϕ ,

B(2) = r cosϕSr θ − r sinθ cosθ sinϕSrϕ + r 2 sin2 θ sinϕSθϕ ,

B(3) = r sin2 θSrϕ + r 2 sinθ cosθSθϕ , (63)

where the spin–tensor notation introduced in Eq. (9) has been used. From Eq. (62)
the four conserved quantitiesJ(a) are found as follows:

J(0) ≡ E = m

(
1− α

r
− 1

3
3r 2

)
dt

dτ
−
(
α

2r 2
− 1

3
3r

)
Srt ,

J(1) = −r sinϕ

(
mr

dθ

dτ
+ Sr θ

)
− cosϕ

(
cotθ J(3)− r 2Sθϕ

)
,

J(2) = r cosϕ

(
mr

dθ

dτ
+ Sr θ

)
− sinϕ

(
cotθ J(3)− r 2Sθϕ

)
,

J(3) = r sin2 θ

(
mr

dϕ

dτ
+ Srϕ

)
+ r 2 sinθ cosθSθϕ

)
, (64)

In addition to these conserved quantities, there are four generic constants of motion
as described in Subsection 2.3. We consider motion for which

H = −m2

2
. (65)

This yields geodesic motion:

gµνdxµdxν = −dτ 2. (66)

The condition (13) gives the supersymmetric constraint

Q = 0, (67)
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which enables one to solve forψ t in terms of the spatial componentsψ i :(
1− α

r
− 1

3
3r 2

)
dt

dτ
ψ t = 1

(1− α/r −3r 2/3)

dr

dτ
ψ r

+ r 2

(
dθ

dτ
ψθ + sin2 θ

dϕ

dτ
ψϕ

)
. (68)

As a result, the dual superchargeQ∗ and the chiral charge0∗ vanish as well:
Q∗ = 0∗ = 0.

From (64) we can derive a useful identity

r 2 sinθSθϕ = J(1) sinθ cosϕ + J(2) sinθ cosϕ + J(3) cosθ , (69)

which, in physical terms, simply states that there is no orbital angular momentum
in the radial direction.

Combining Eqs. (64)–(67), one can obtain a complete set of first integrals of
motion as follows:

dt

dτ
= 1

(1− α/r −3r 2/3)

[
E

m
+ 1

m

(
α

2r 2
− 3r

3

)
Srt

]
,

dr

dτ
=
{(

1− α
r
− 1

3
3r 2

)2( dt

dτ

)2

− 1+ α
r
+ 1

3
3r 2

− r 2

(
1− α

r
− 1

3
3r 2

)[(
dθ

dτ

)2

+ sin2 θ

(
dϕ

dτ

)2]}1/2

,

dθ

dτ
= 1

mr2

(− J(1) sinϕ + J(2) cosϕ − r Sr θ
)
,

dϕ

dτ
= 1

mr2 sin2 θ
J(3)− 1

mr
Srϕ − 1

m
cotθSθϕ , (70)

where

Srt = mr2

E

(
dθ

dτ
Sr θ + sin2 θ

dϕ

dτ
Srϕ

)
. (71)

Finally Eq. (8) with Eq. (9) gives equations for the spin. The equations that are left
for solution are

dSr θ

dτ
= −1

r

dr

dτ
Sr θ + sinθ cosθ

dϕ

dτ
Srϕ − r sin2 θ

(
1− 3α

2r

)
dϕ

dτ
Sθϕ ,

dSrϕ

dτ
= cotθ

dϕ

dτ
Sr θ −

(
1

r

dr

dτ
+ cotθ

dθ

dτ

)
Srϕ + r

(
1− 3α

2r

)
dθ

dτ
Sθϕ , (72)

whereSθϕ is given by (69).
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For3 = 0 the above equations reduce to the Schwarzschild results (Rietdijk
and van Holten, 1993). One has to solve Eqs. (70)–(72) to obtain the full solution
of the equations of motion for all coordinates and spins.

3.2. Special Solutions

We apply the results obtained in Subsection 3.1 to study the special case of
motion in a plane, for which we chooseθ = π/2. In contrast to scalar particles,
this is not the generic case, because in general orbital angular momentum is not
conserved separately.

Planar motion for spinning particles is strictly possible only in special cases, in
which orbital and spin angular momentum are separately conserved. This happens
only in two kinds of situations: the orbital angular momentum vanishes, or spin
and orbital angular momentum are parallel.

With θ = π/2 andθ̇ = 0, Eqs. (70)–(72) become

dt

dτ
= 1

(1− α/r −3r 2/3)

[
E

m
+ 1

E

(
α

2
− 3

3
r 3

)
dϕ

dτ
Srϕ

]
,

dr

dτ
=
{(

1− α
r
− 3

3
r 2

)2( dt

dτ

)2

− 1+ α
r
+ 3

3
r 2

− r 2

(
1− α

r
− 3

3
r 2

)(
dϕ

dτ

)2}1/2

,

dϕ

dτ
= 1

mr2
J(3)− 1

mr
Srϕ ,

d

dτ
(r Sr θ ) = −r 2

(
1− 3α

2r

)
Sθϕ

dϕ

dτ
,

d

dτ
(r Srϕ) = 0. (73)

The third and the last equations of (73) express the fact that the orbital angular
momentum and the component of the spin perpendicular to the plane in which the
particle moves are separately conserved:

r Srϕ ≡ 6, mr2ϕ̇ = J(3)−6 ≡ L , (74)

where6 andL are two constants. From the first of Eq. (73) we find a formula for
the gravitational redshift in the form

dt = dτ

(1− α/r −3r 2/3)

[
E

m
+ 1

mEr3

(
α

2
− 3

3
r 3

)
L6

]
. (75)

For nonzero orbital angular momentumL, the time-dilation receives a
contribution from spin–orbit coupling. Thus we see that time-dilation is not a
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purely geometric effect, but also has a dynamical component (van Holten, 1991,
1992).

From Eqs. (69), third of (70), and fourth of (73) withθ = π/2, we find that
there are indeed only two possibilities:

(i) ϕ̇ = 0, (ii) Sθϕ = 0. (76)

Case(i). ϕ̇ = 0 implies thatL = 0. The particle moves along a fixed radius.
The equation of motion of the particle for a distant observer is described by

dr

dt
=
(

1− α
r
− 1

3
3r 2

)√
1− m2

E2

(
1− α

r
− 1

3
3r 2

)
(77)

as in the case of a spinless particle. If we chooseϕ = 0 for the path of the particle,
then the spin tensor components are all conserved:

r 2Sθϕ = J(1), r Sr θ = J(2), r Srϕ = J(3). (78)

Case(ii). ϕ̇ 6= 0 implies that

Sθϕ = 0, Sr θ = 0, J(1) = J(2) = 0. (79)

This states that the spin is parallel to the orbital angular momentum. From Eq. (73)
for ṙ andϕ̇ we obtain following equation for the orbit of the particle:

1

r 2

(
dr

dϕ

)2

= E2−m2

L2
r 2− 1+ m

L

(
α − 2

3
3r 3

)
×
(

mr

L
+ J(3)

mr

)
+3r 2

(
1+ m2r 2

L2

)
. (80)

In terms of dimensionless variables

ε = E

m
, x = r

α
, ` = L

mα
, 1 = 6

L
, λ = α

√
|3|, (81)

Eq. (80) takes the form

`2

x4

(
dx

dϕ

)2

= α2ẋ2 = ε2−UR(x, `2, λ2), (82)

where

UR(x, `2, λ2) = 1+
(

2

3
(1+1)`2− x3+ 2

3
x2− `2x

)
λ2− 1

x

+ `
2

x2
− `2(1+1)

1

x3
(83)

defines an effective potential.
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All calculations presented here are rather formal, as1 is not a pure number.
For realistic physics situations, we have to replace1 in certain limiting cases by a
real number. As mentioned in Introduction section this may be done by averaging1

over some suitable density, as in the path-integral. In the following we assume that
such an averaging procedure has been performed, and treat1as a classical variable.
To avoid any inconsistency that may result from this semiclassical approximation,
we presuppose the numerical value of1 to be small:1¿ 1.

For bound state orbits it is necessary thatε < 1. The functionUR(x, `2, λ2)
has a point of inflection that corresponds to a circular orbit with minimum radius
given by

λ2[2(3x − 1)x + `2]x3+ 3`2(1+1)
1

x
− `2 = 0, (84)

where

`2 = 1

P

[
x − 3λ2

(
1− 4

9x

)
x5

]
,

P = 2− 3(1+1)
1

x
+ λ2x3, (85)

with P > 0. For this critical orbit, the energy is given by

ε2
crit = 1− 1

x
−
(

x3− 2x2

3

)
λ2+ `2R

1

x2
, (86)

with

R= 1− (1+1)
1

x
+
(

2

3
(1+1)x2− x3

)
λ2,

and the time-dilation factor is expressed by(
dt

dτ

)
crit

= 1

N

[
εcrit − `21

2εcritx3
(1− 2(1− N)x)

]
, (87)

with

N = 1− 1

x
+ 1

3
λ2x2.

Equation (84) withλ = 0 gives the radius of the minimal circular orbit as

x = `2 = 3(1+1). (88)

The energy and the time-dilation for this orbit are respectively given by

εcrit =
√

2

3

(
2+ 1

8

)
,

(
dt

dτ

)
crit

=
√

2

(
1− 3

8
1

)
(89)
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to first order in1. This is the Schwarzschild result as obtained in Rietdijk and van
Holten (1993).

The orbits of the particle that approach precessing ellipses (because of rela-
tivistic effects) are described by

x = κ

1+ ε cos[ϕ − w(ϕ)]
, (90)

whereκ = κ/α, κ being the semilatus rectum andε is the eccentricity with 0<
ε < 1. The perihelion and aphelion are given by

ϕ
(t)
ph − w

(
ϕ

(t)
ph

) = 2tπ, ϕ
(t)
ah − w

(
ϕ

(t)
ah

) = (2t + 1)π. (91)

The angleϕ(t)
ph is the t th perihelion of the particle, whilew(ϕ(t)

ph) is the amount
of precession of the perihelion aftert revolutions. Hence the precesssion of the
perihelion after one revolution is

1w ≡ w
(
ϕ

(1)
ph

)− w
(
ϕ

(0)
ph

) = ϕ(1)
ph − ϕ(0)

ph − 2π ≡ 1ϕ − 2π. (92)

The energy at the perihelion/aphelion is given by

ε2 = 1−
(

1± ε
κ

)
+ `2

(
1± ε
κ

)2

− `2(1+1)

(
1± ε
κ

)3

+ λ2

[
2

3
`2(1+1)−

(
κ

1± ε
)3

+ 2

3

(
κ

1± ε
)2

− `2

(
κ

1± ε
)]
. (93)

Since the energyε is a constant of motion, it follows from comparison of both
expressions forε2 that

`2 = κ2

3(1− ε2)2

3κ(1− ε2)3+ λ2κ4[4(1− ε2)− 3(3+ ε2)κ]

(1− ε2)κ[2κ − (1+1)(3+ ε2)] + λ2κ5
. (94)

Using the above results and introducing

y = ϕ − w(ϕ) (95)

the equation of motion (82) can be put in the form

dϕ = ε

κ

siny(1+ ε cosy)3/2(∑7
r=0 Ar (ε cosy)r

)1/2 dy, (96)

where

A0 = 1

3κ2`2
[3κ2(ε2− 1)+ 3(κ − `2)+ λ2κ2(3κ2− 2κ + 3`2)]

+ 1

3κ2
(1+1)(3− 2κ3λ2),
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A1 = 1

3κ2`2
[3κ(3κ(ε2− 1)+ 4)− 15̀ 2− 2κ3(κ − 3`2)λ2]

+ 2

3κ3
(1+1)(9− κ3λ2),

A2 = 1

κ2`2
[3κ(κ(ε2− 1)+ 2)− 10̀ 2+ κ2`2λ2] + 1

κ3
(1+1)(15− 2κ3λ2),

A3 = 1

κ2`2
[κ(κ(ε2− 1)+ 4)− 10̀ 2] + 2

3κ3
(1+1)(30− κ3λ2),

A4 = 1

κ2`2
(κ − 5`2)+ 15

κ3
(1+1),

A5 = − 1

κ3
[κ − 6(1+1)],

A6 = 1

κ3
(1+1),

A7 = 1

κ4
[1− 2(1+1)],

ε2 and`2 are given by (93) and (94). Then1ϕ as defined in (92) is obtained by
integrating (96) from one perihelion to the next one with 0≤ y ≤ 2π . The result
gives

1ϕ = 2π

a

[
1+ 1

512
ε2(15b+ 70c)+ · · ·

]
, (97)

wherea = √A0 κ/ε, b = A1/A0, c = A2/A0. In evaluating this expression we
should disregard terms of order12. With λ = 0, Eq. (97) reduces to

1ϕ = 2π

[
1+ 3

2κ
(1+1)+ 3

16κ2
(ε2+ 18)(1+1)2+ · · ·

]
, (98)

which is exactly the result as derived in Rietdijk and van Holten (1993) for the
Schwarzschild spacetime.

3.3. Nongeneric Supersymmetry

In this subsection, we apply the results of Subsection 2.4 to investigate a new
type of supersymmetry in the Schwarzschild–de Sitter spacetime described by the
metric (57). The Killing–Yano tensorfµν(x) for this spacetime is defined by

1

2
fµνdxµ ∧ dxν = r sinθdθ ∧ r 2dϕ, (99)
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while the vierbeinea
µ(x) is given by the following expressions:

e0
µdxµ = −Udt, e1

µdxµ = U−1dr, e2
µdxµ = rdθ , e3

µdxµ = r sinθdϕ,
(100)

whereU ≡ √V . The components off a
µ (x) can be written as follows:

f 0
µdxµ = 0= f 1

µdxµ, f 2
µdxµ = −r 2 sinθdϕ, f 3

µdxµ = r 2dθ. (101)

From Eq. (45) we obtain the components ofcabc(x) as follows:

c012= 0, c013= 0, c023= 0, c123= −2U. (102)

Inserting the quantities derived in Eqs. (101) and (102) into Eq. (46) we obtain the
new supersymmetry generatorQf for the Schwarzschild–de Sitter spacetime. From
Eqs. (49)–(51) the Killing tensor, vector, and scalar are constructed as follows:

Kµν(x)dxµdxν = r 4(sin2 θdϕ2+ dθ2), (103)

Iµ(x)dxµ = r 2[U (sinθSrϕ +U cosθSθϕ)

−V cosθSθϕ ]dϕ + r 2U Sr θdθ , (104)

G = 0. (105)

From the Poisson–Dirac bracket (35) it can be verified straightforwardly that these
equations satisfy theso(3,1) algebra.

The expression forQf and Eqs. (103)–(105) then define the conserved charge

Z = i

2
{Qf , Qf}. (106)

4. REMARKS

The spinning particle model is a world line supersymmetric extension of the
ordinary relativistic point particle. It is a theory that describes in a pseudoclassical
way a Dirac fermion moving in an arbitrary spacetime. Together with the usual
spacetime coordinates, the model involves anticommuting vectorial coordinates
that take into account the spin degrees of freedom. Along the world line of the
particle there is a supersymmetry between the fermionic spin variables and the
bosonic position coordinates. The model gives a one-dimensional supersymmetric
field theory on the world line.

There is no classical interpretation for the anticommuting spin variables. One
has to average over the spin variables to get the “observable” trajectories. Indeed, it
is possible to quantize the model giving rise to supersymmetric quantum mechanics
and then the conservation law for the supercharges becomes the Dirac equation.

Carter and McLenaghan (1979) showed that the Killing–Yano tensors play a
key role in the Dirac theory on a curved spacetime. The study of the generalized
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Killing equations strengthens the connection of the Killing–Yano tensors with the
supersymmetric classical and quantum mechanics on a curved manifold.

The Stackel–Killing tensor determines a constant of motion (directly) for a
scalar particle in a curved spacetime, whereas for a spinning particle it requires
nontrivial contributions from spin. These spin-dependent portions are described by
the Killing–Yano-type square root of the Stackel–Killing tensor. We have presented
a detailed discussion on how to construct conserved quantities using Killing–Yano
tensors for the Schwarzschild–de Sitter spacetime. This spacetime has an interest-
ing property that it is asymptotically de Sitter instead of being asymptotically flat.
We have solved the equations of motion for the case whenθ is held fixed. Because
of the presence of cosmological parameter the result of our study is interesting
from the point of view of the inflationary scenario of the early universe. From
our result one can get the result for the Schwarzschild spacetime as obtained in
Rietdijk and van Holten (1993) by simply choosing the cosmological parameter
3 = 0. Besides, by neglecting the mass parameter one can specialized our result
for the interesting de Sitter spacetime (de Sitter, 1917).

Even if an a priori numerical value for the ratio1 (Eq. (81)) cannot be
assigned, its appearance in various places like in Eqs. (86), (87), (89), (97), and
(98) still allows the pseudoclassical theory to make quantitative predictions by
comparing different physical processes in the regime where the semiclassical limit
applies.

Supersymmetry and its local version—supergravity—are relevant in the fun-
damental theory of particle interactions. In modern particle theory, supersymmetry
is the most general symmetry of theS-matrix consistent with relativistic quantum
field theory (Haaget al., 1975). So it is not inconceivable that nature might make
some use of it. Indeed, superstrings (Greenet al., 1987; Schellekens, 1989) are
the present best candidates for a consistent quantum theory unifying gravity with
all other fundamental interactions, and supersymmetry appears to play a very im-
portant role for the quantum stability of superstring solutions in four-dimensional
spacetime. In view of these reasons, the study of the geometry of the graded pseu-
domanifolds with both real number and anticommuting variables is well motivated.
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